第一章 隐私计算行业概述
1.1 隐私计算基本概念
1.1.1 国外隐私计算定义
1.1.2 国内隐私计算定义
1.2 隐私计算作用
1.2.1 助力数据要素市场化配置
1.2.2 成为防范数据泄露突破口
1.2.3 促进多方数据安全合规协作
1.2.4 促进大数据进入新发展阶段
1.3 数据流通相关介绍
1.3.1 数据流通模式差异性
1.3.2 数据流通技术模式类型
1.3.3 数据流通应用场景类型
1.3.4 数据流通面临的挑战
第二章 2020-2022年中国数据安全行业综述
2.1 数据安全行业概述
2.1.1 数据安全定义
2.1.2 数据安全体系
2.1.3 数据安全治理理念
2.2 中国数据安全行业发展情况分析
2.2.1 数据安全行业驱动因素
2.2.2 数据安全行业发展现状
2.2.3 数据安全行业竞争格局
2.2.4 数据安全行业发展挑战
2.2.5 数据安全行业发展措施
2.3 典型行业数据安全需求分析
2.3.1 政务数据安全需求
2.3.2 企业数据安全需求
2.3.3 金融行业数据安全需求
2.4 数据安全行业发展机遇及趋势
2.4.1 数据安全行业发展机遇
2.4.2 未来数据安全维护趋势
2.4.3 全球数据安全治理趋势
2.4.4 中国数据安全发展趋势
第三章 2020-2022年全球隐私计算行业发展情况
3.1 全球隐私计算相关政策支持
3.1.1 欧盟发布技术指南
3.1.2 美国发布数据法案
3.1.3 英国设立研究机构
3.2 全球隐私计算行业发展情况
3.2.1 隐私计算市场需求
3.2.2 隐私技术发展历程
3.2.3 机密计算联盟成立
3.2.4 隐私计算专利分布
3.2.5 企业相关布局动态
3.3 全球隐私计算技术应用实践
3.3.1 欧洲
3.3.2 美国
3.3.3 其它地区
第四章 2020-2022年中国隐私计算行业发展综述
4.1 国内隐私计算行业政策环境
4.1.1 行业主要政策概览
4.1.2 数据安全法影响分析
4.1.3 网络安全产业计划
4.1.4 个人信息保护法发布
4.1.5 大数据算力枢纽方案
4.1.6 网络数据安全管理条例
4.1.7 地方相关政策支持分析
4.2 国内隐私计算行业发展分析
4.2.1 行业技术发展现状
4.2.2 行业企业发展情况
4.2.3 主要隐私计算平台
4.2.4 行业应用领域分析
4.2.5 行业商业模式发展
4.2.6 行业标准化发展情况
4.3 隐私计算行业参与主体分析
4.3.1 隐私计算产业生态
4.3.2 隐私计算技术应用方
4.3.3 隐私计算技术产品提供方
4.3.4 隐私计算领域科研机构
4.3.5 隐私计算产品评测机构
4.4 隐私计算行业合规分析
4.4.1 提升数据流通的合规性
4.4.2 隐私计算方案合规要求
4.4.3 隐私计算合规路径探索
4.5 隐私计算行业面临挑战
4.5.1 安全性挑战影响市场信任
4.5.2 性能瓶颈阻碍规模化应用
4.5.3 平台互联互通壁垒问题
4.6 隐私计算行业发展建议
4.6.1 健全法律法规
4.6.2 构建标准体系
4.6.3 培育数据要素市场
第五章 2020-2022年隐私计算行业金融领域应用分析
5.1 金融行业隐私计算应用背景
5.1.1 国内金融行业发展现状
5.1.2 金融科技布局态势分析
5.1.3 数据要素市场有待完善
5.1.4 金融数据融合应用需求
5.1.5 隐私计算助力行业安全发展
5.2 金融行业隐私计算应用发展情况
5.2.1 金融隐私计算相关标准
5.2.2 金融隐私计算试点情况
5.2.3 隐私计算主要金融应用场景
5.2.4 隐私计算金融营销场景应用
5.2.5 隐私计算金融风控场景应用
5.2.6 金融科技创新监管试点应用
5.3 金融行业应用隐私计算技术分析
5.3.1 金融隐私计算参与主体
5.3.2 金融隐私计算技术方法
5.3.3 金融隐私计算技术方案
5.3.4 金融隐私计算模式架构
5.3.5 金融隐私计算生态建设
5.4 金融行业隐私计算应用发展思路
5.4.1 制定金融业数据生态规划
5.4.2 体系性布局数据生态建设
5.4.3 生态赋能典型场景应用
5.5 金融机构隐私计算应用情况
5.5.1 工商银行
5.5.2 光大银行
5.5.3 交通银行
5.5.4 平安银行
第六章 2020-2022年隐私计算行业其他领域应用分析
6.1 医疗领域
6.1.1 医院信息化发展现状
6.1.2 医院安全设备建设
6.1.3 医疗物联网安全发展
6.1.4 隐私计算需求分析
6.1.5 隐私计算应用场景
6.1.6 隐私计算应用案例
6.2 政务领域
6.2.1 政务信息化发展情况
6.2.2 政务数据开放情况
6.2.3 政务数据安全风险
6.2.4 隐私计算需求分析
6.2.5 隐私计算应用场景
6.2.6 隐私计算应用案例
6.3 工业互联网领域
6.3.1 工业互联网平台发展态势
6.3.2 工业互联网平台安全建设
6.3.3 工业互联网隐私计算应用
6.4 其他领域应用潜力
6.4.1 能源互联网
6.4.2 汽车互联网
6.4.3 数据跨境流动
第七章 2020-2022年隐私计算行业技术综述
7.1 隐私计算技术发展态势
7.1.1 隐私计算技术体系
7.1.2 隐私计算相关技术
7.1.3 隐私计算技术路径
7.1.4 隐私计算企业定位
7.1.5 隐私计算专利分析
7.2 隐私保护相关传统技术
7.2.1 数据脱敏技术
7.2.2 假名化技术
7.2.3 传统技术的限制
7.3 同态加密技术
7.3.1 技术介绍
7.3.2 算法组成
7.3.3 技术应用
7.3.4 国外技术发展
7.3.5 国内技术突破
7.4 多方安全计算技术
7.4.1 技术概念
7.4.2 技术模式
7.4.3 关键技术
7.4.4 技术优劣势
7.4.5 国内主要厂商
7.4.6 应用场景案例
7.5 联邦学习技术
7.5.1 技术概念
7.5.2 技术模式
7.5.3 技术种类
7.5.4 技术优劣势
7.5.5 国内主要厂商
7.5.6 应用场景案例
7.6 差分隐私技术
7.6.1 技术概念
7.6.2 技术优劣势
7.6.3 国内主要厂商
7.6.4 应用场景案例
7.7 机密计算技术
7.7.1 技术概念
7.7.2 支撑技术
7.7.3 技术优劣势
7.7.4 国内主要厂商
7.7.5 应用场景案例
7.8 可证去标识技术
7.8.1 技术简介
7.8.2 技术优劣势
7.8.3 国内主要厂商
7.8.4 应用场景案例
第八章 2020-2022年隐私计算行业重点技术分析——区块链技术
8.1 区块链行业发展情况
8.1.1 国外区块链技术发展
8.1.2 区块链市场发展情况
8.1.3 国内区块链政策支持
8.1.4 国内区块链技术应用
8.1.5 国内区块链技术平台
8.2 隐私计算领域区块链技术发展情况
8.2.1 技术应用价值
8.2.2 技术应用现状
8.2.3 技术发展现状
8.2.4 技术融合优势
8.2.5 平台架构应用
8.3 隐私计算结合区块链典型解决方案
8.3.1 机构间联合风控
8.3.2 机构间联合营销
8.3.3 机构间联合数据运营
8.3.4 可信协作与跨链取证
8.3.5 链上数据分析与核验
8.3.6 第三方外包数据处理
8.3.7 可计量价值数据资产流转
8.4 基于区块链的隐私计算平台实例
8.4.1 蚂蚁摩斯安全多方计算平台
8.4.2 PlatONE
8.4.3 Enigma
8.4.4 Avalon
第九章 2019-2022年国内隐私计算行业主要企业运营分析
9.1 蚂蚁集团
9.1.1 企业发展概况
9.1.2 企业经营情况
9.1.3 企业合作动态
9.1.4 隐私计算产品
9.2 翼方健数
9.2.1 企业发展概况
9.2.2 企业融资情况
9.2.3 隐私计算平台
9.2.4 企业应用案例
9.3 锘崴科技
9.3.1 企业发展概况
9.3.2 企业融资情况
9.3.3 企业核心技术
9.3.4 企业解决方案
9.4 微众银行
9.4.1 企业发展概况
9.4.2 银行经营状况
9.4.3 银行业务领域
9.4.4 银行竞争优势
9.4.5 隐私计算应用
9.4.6 产品发布动态
9.4.7 银行发展战略
9.5 华控清交
9.5.1 企业发展概况
9.5.2 企业融资情况
9.5.3 主要产品分析
9.5.4 企业合作动态
9.6 洞见科技
9.6.1 企业发展概况
9.6.2 企业核心技术
9.6.3 隐私计算产品
9.6.4 企业融资情况
第十章 隐私计算行业投资及发展趋势预测
10.1 隐私计算行业投融资分析
10.1.1 行业投融资情况
10.1.2 行业投融资阶段
10.1.3 行业投融资来源
10.2 隐私计算行业发展趋势分析
10.2.1 行业迎来政策机遇
10.2.2 “十四五”行业发展方向
10.2.3 大数据行业需求趋势
10.2.4 多方生态融合趋势
10.3 隐私计算行业技术发展展望
10.3.1 计算性能优化方向
10.3.2 多元技术融合趋势
10.3.3 隐私计算应用落地
10.3.4 企业技术定位趋向
隐私计算是指在提供隐私保护的前提下实现数据价值挖掘的技术体系,而非单一技术,早期多被定义为隐私保护计算、隐私保护技术等。2016年发布的《隐私计算研究范畴及发展趋势》正式提出“隐私计算”一词,并将隐私计算定义为“面向隐私信息全生命周期保护的计算理论和方法,是隐私信息的所有权、管理权和使用权分离时隐私度量、隐私泄漏代价、隐私保护与隐私分析复杂性的可计算模型与公理化系统。”
早在2016-2017年,矩阵元、蚂蚁金服、微众银行等企业就将隐私计算作为重要方向,随着2018年欧盟GDPR的落地,数据隐私监管变得原来越严厉,关注隐私计算赛道的企业开始增加,时至今日,一级市场此类企业正快速出现,2020年正成为隐私计算元年。从投资角度看,目前隐私计算尚处于技术提升期,还未形成新的商业模式,但随着Gartner将其纳入2021年重点深挖的9项技术之一,隐私计算在二级市场风口日益临近。
我国以政策手段促进技术创新发展,利用规划指明发展方向,防止监管遏制科技进步。在数字经济迅速发展的背景下,隐私计算技术的关键作用正在逐渐显现,发展规划等各项相关推进政策也将不断向行业化、地方化方向细分发展,自2019年起多行业各地方规划提出研究利用隐私计算解决相关问题。从行业角度来看,近两年隐私计算政策侧重于金融科技、工业大数据、区块链三个领域。2021年11月14日,国家网信办就《网络数据安全管理条例(征求意见稿)》公开征求意见,《数安条例》从一般规定、个人信息保护、重要数据安全、数据跨境安全管理、互联网平台运营者义务、监督管理、法律责任等方面展开,在实施细则、责任界定、规范要求、惩罚措施等方面更加清晰细致。
和仕咨询发布的《2023-2027年中国隐私计算行业深度调研及投资前景预测报告》共十章。首先介绍了隐私计算的基本概念及作用,接着分析了数据安全行业的发展及需求,并介绍了国内外隐私计算行业的发展环境与发展现状。随后,报告从应用与技术两个方面对隐私计算行业进行了深入分析;然后,报告分析了国内重点企业运营状况,最后对隐私计算产业的投融资情况以及发展前景做了分析。
本报告目录与内容系和仕咨询原创,未经和仕咨询书面许可及授权,拒绝任何形式的复制、转载,谢谢!